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under which moir6 fringes are observed in the X-ray 
interferometer with continuous radiation are similar 
to those obtained by Bonse & te-Kaat (1971) for moir6 
fringes with monochromatic radiation from an ex- 
tended source (Shulakov & Aristov, 1976)]. 

The next paper will be devoted to a detailed analysis 
of the experimental arrangement on the basis of the 
spherical-wave approximation of diffraction (Kato, 
1961) and to the derivation of the dependence of the 
observed variations of intensity on the experimental 
geometry and on the dynamical characteristics of the 
crystal. 
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A theoretical analysis is given of the contrast of the topographic image of a perfect crystal with continu- 
ous radiation. Conditions for observation of polychromatic interference fringes in this diffraction scheme 
are analysed on the basis of Kato's dynamical theory of spherical-wave diffraction. The effect of polariza- 
tion and azimuthal divergence of X-rays on the contrast of topographs is also discussed. 

1. Introduction 

In the preceding paper (Part I: Aristov, Shmytko & 
Shulakov, 1977) we have reported the experimental 
investigation of the contrast on topographical images 
obtained for perfect single-crystal Si and Ge wafers in 
a set-up with a point source of divergent continuous 

* Copyright reserved by the All-Union Agency on Authors" 
Rights. 

X-ray radiation. It was demonstrated that topographs 
display polychromatic interference fringes. 

In the present paper we apply the dynamical theory 
of spherical-wave diffraction by perfect crystals (Kato, 
1961 a, b) to the analysis of contrast on the topographs 
of perfect crystals, produced by continuous X-ray ra- 
diation. The analysis is restricted to the case of sym- 
metric Laue diffraction by the crystal with zero ab- 
sorption. This approximation enables one to derive 
simple expressions for the intensity of diffracted radia- 
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tion, which prove to be in good agreement with the ex- 
per imental  results. 

In the calculations we neglect the diffraction-caused 
divergence of rays of each wavelength in order to be 
able to apply Kato 's  theory of spherical-wave diffrac- 
tion to the calculations of intensity distr ibution on a 
film. This is possible if the increase in size of a wave- 
length spot on the film associated with the diffraction- 
caused divergence AO is far less than the size of the base 
of the Bor rmann  fan (triangle GFH in Fig. 1): 

(D2 +D3)AO,~2t tan 0 (1) 

where 0 is usually of the order of 5 x 10- s rad for per- 
fect crystals, D 2 + D  3 is the distance from the exit 
crystal surface to the film, t is the crystal thickness, 0 
is Bragg's angle. It should be noted that condit ion (1) 
must  be satisfied only in order that Kato 's  theory 
can be used. The results obtained on the basis of this 
theory are also valid in the case when the diffraction 
divergence cannot  be neglected. This statement follows 
from the arguments  given below and is confirmed by 
the experiment.  

In the analysis of the experimental  ar rangement  
shown in Fig. 2, one must  not forget that the crystal is 
i l luminated by a divergent wave from a point  source. 
The divergence of rays results in different changes of 
intensity on a film in the radial  X and az imuthal  Y di- 
rections. These changes take place independent ly  of 
one another  and can be analysed separately. First we 
consider the intensity distr ibution in the radial direc- 
tion. For  simplicity, we assume that the plane of X-ray 
diffraction coincides with that of y = 0. 

S'I' X 

D, 

1 
19, 
l 
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Fig. 2. Scheme of symmetric Laue diffraction of the divergent poly- 
chromatic wave on the perfect crystal. D1 is the distance from the 
radiation source S to the entrance crystal surface; D2 is the dis- 
tance from the exit crystal surface to the focusing point F (DI = 
D2); D3 is the distance from the focusing point to the film ( -D2 < 
D3< oct); X, Y, Z are the Cartesian coordinates with the origin at 
the point S, the X axis is the normal to the reflecting planes, the 
Z axis is the normal to the crystal surface. The directions X and Y 
we shall call radial and azimuthal respectively. 

tion of polychromat ic  waves we choose a narrow inter- 
val of wavelengths d2, such that d0=(d2 /2)  tan 0 is 
much smaller  than the angular  width of the reflexion. 
The intensity dih(xe) of the diffracted wave on the exit 
surface of the crystal at a point  P is determined in this 
interval d2 by the expression derived in Appendix A: 

2. Calculation of intensity distribution along the radial 
direction 

Fig. 1 shows Kato 's  scheme, clarifying the process of 
propagat ion  of the monochromat i c  wave field in a 
crystal. To apply this scheme to the analysis of diffrac- 

ft 

Fig. 1. Scheme clarifying the process of propagation of the mono- 
chromatic wave field in a crystal. Ko and Ko + 2rch are the wave 
vectors of primary and diffracted waves, P is the observation 
point on the exit surface of the crystal, the point E is the centre of 
the base of the Borrmann fan, ]xq] = EP. 

dih(xe) = (C/256a: 2) (COS O/KR) 
× (KClzhl/sin 20)2~2(~)a()Od2. (2) 

Here c is the light velocity; K = 2n/2; R is the distance 
from the radiat ion source S to the observation point P ;  
C is the polarizat ion factor equal to 1 for the a-polar-  
ization and to [cos 20] for the n-polar izat ion;  Zh is the 
hth Fourier  coefficient of polarizabil i ty of the crystal 
for X-rays of the hkl reflexion; Jo ( ( )  is Bessel's function 
of zero order which differs from zero only within the 
Bor rmann  fan, i.e. when (2~>0; (=KCIZhI(sin20) -a 
x (~,)1/2, and the values ~ and 4' are defined in Fig. 1 ; 

a(2) is the spectral density of radiation. In the system 
of coordinates introduced in Fig. 2, xp = - D1 tan 0 + x~ 
where Xq varies along the X axis and is equal to the 
distance from point  E to point  P. 

We now calculate the intensity dlh(X) on a film placed 
at a distance D2 + D3 from the crystal exit surface. Let 
condit ion (1) be satisfied, i.e. the divergence of the dif- 
fracted beam in the wavelength range d2 can be neg- 
lected. Then each point  P on the crystal surface cor- 
responds to a point  x on the film. This point  lies at the 
intersection of a ray, traced from the point  P and paral- 
lel to the wave vector of the diffracted wave, K0 + 2nh, 
with the film. Because of the parallel transfer of the 
wave field from the crystal exit surface to the film plane, 
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the distribution dlh(X) is a replica of the distribution 
dih(xp), with the coordinates x and Xp related to the 
experimental geometry and the variable Xq by the con- 
dition: 

x = ( D 1  -t- D3) tan O-k-xp=D3 tan O+xq. (3) 

Owing to the azimuthal divergence of a diffracted wave 
the intensity on the film in the wavelength range d2 is 
my=(2D1 +D3)/DI times less than that on the crystal. 
Finally we can write 

dlh(X)=m~ ldih(xp). (4) 

For polychromatic wave diffraction by a crystal, the 
field intensities with different 2 are superposed in each 
point x of the film. The range of 2 values which con- 
tribute to the intensity at this point are determined by 
(3), i.e. by the dimensions of the Borrmann fan and the 
experimental geometry. Let us calculate the intensity 
of a diffracted wave on the film by substituting the ex- 
pression for dih(Xp) into (4) and then integrating the 
expression obtained over d2: 

Ih(X)= my 1(C/256n2) 

x (cos O/KR) (KCIXhl/sin 20)2Jg(~)o(2)d2. (5) 

For the calculation of the integral in (5), we express the 
variable ~ in terms of x and xq and integrate with 
respect to dxq by change of variables. From Fig. 1, (3) 
and Bragg's equation, 2dh sin 0----2, it follows that 

~=2rcdhC(l)~hl/22)[(t/D3)2(X--Xq)2--XZq-] 1/2 (6) 

d 2 =  -(2dh/D3) cos 30dxq. (7) 

The condition ~2 > 0  defines the limits of variation of 
Xq: 

a= - x t / ( D 3 - t ) < _ x q < _ x t / ( D 3 + t ) = b .  (8) 

The quantity Xq2=b determines the values of the 
upper limit of integration in (5), and Xql = a determines 
the lower. We shall assume that 

D3 >> t. (9) 

This assumption fits the experiment well since t < 2 mm 
and D 3 is normally greater than 5 cm. In this case, a 
change in all variables, except for Bessel's function, can 
be neglected within the integration limits determined 
by inequalities (8). Taking into account the above con- 
siderations, the integral in (5) is written in the form: 

( c ) (cos0  
Ih(X)= ~ k, KR J \ sin 20 J \mxm,J 

× (10) 

Here rnx=D3/D1 is the image magnification factor in 
the radial direction X, a(x)= [2dha(2) cos 30]/D1 is the 
linear density of radiation diffracted at the entrance 

crystal surface at the point x ' =  -mxX. The values 0, 2 
and x in (10) are related by Bragg's equation and the 
equation x = D3 tan 0. The integral in (10) is calculated 
in Appendix B. By substituting it into (10), we obtain 
the final expression for Ih(x): 

Ih(X) = ~  r(x) Jo(¢)dQ • (11) 

Here 

T(x)=(c/128rc 3) (KR)-  1 
x (KCl)~hl/sin 20)[a(x)/mxmr] (11.1) 

2A = gfl)~hlt/cos O . (11.2) 

In terms of the accuracy of m21, m71 and a(x), 
the approximate formula (11) for a polychromatic inte- 
gral intensity in the case of a transparent crystal takes 
the same form as that for the integral intensity of trans- 
verse patterns in a monochromatic wave (Kato, 1961b) 
or as that for angular integral intensity in the plane- 
wave theory (Waller, 1926). In the case of an absorbing 
crystal, or for small distances D3, the expressions for 
various integral intensities differ, since in the case 
under discussion the polychromatic integral intensity 
is formed by summation at each point of the rays from 
different distributions dih. The basic difference between 
monochromatic Ih, mh and polychromatic Ih, ph inten- 
sities lies in the fact that for obtaining a change in 
Ih, mh the crystal thickness must be varied, while Ih.ph 
varies even in the case of diffraction on a plane-parallel 
crystal, since the wavelength and hence the parameter 
A vary in the radial direction. 

The maxima of the polychromatic integral intensities 
are found from the condition 2A=Q2t+I, where 
l = O, 1,2,... ; ~2l + 1 are zeros of Bessel's function of the 
zero order. For large l, oscillations are of sinusoidal 
character with period A A = zr, and the fringe spacing 
on the film is found from (11.2). The form of the inten- 
sity distribution Ih, ph depends also on the coefficient 
T(x) which takes into account the experimental geom- 
etry, the spectral composition of radiation used and the 
position of the observation point x. 

In the above consideration we neglected the diffrac- 
tion-caused divergence. This approximation may not 
hold for large crystal-film distances and for thin 
crystals [see equation (1)]. Nevertheless, the obtained 
result remains valid for this case. The following quali- 
tative arguments allow such a conclusion to be drawn. 
When the distance D3 increases, the diameter of the 
diffraction spot, caused by diffraction of one mono- 
chromatic divergent wave, varies only negligibly in the 
radial direction and is approximately equal to 2t tan 0 
+ 5  x 10-5(D2 +D3) , the net intensity of such a spot 
remaining constant. The distance between the maxima 
of the integral intensity increases proportionally to D3 
and the interval of summation A2=)I. 2 - 2 1  at the film 
point x [see equation (5)] decreases proportionally to 
D3. Therefore for very large distances D3 the intensity 
at each point x on the film can be assumed equal to 
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the net intensity of the corresponding diffraction spot, 
obtained by the diffraction of a monochromatic di- 
vergent wave, divided by the coefficient of azimuthal 
magnification. This means that the distribution of in- 
tensity Ih, ph is again described by (11). 

Note that the oscillations of integral intensity Ih, ph 
for the o- and rc polarizations have periods which differ 
by the coefficient [cos 201. This can give rise to the 
deterioration of the contrast of interference fringes of 
the total intensity. The dependence of the fringe con- 
trast of Ih, ph on the polarization in the Y direction 
has been discussed by us in the preceding paper when 
analyzing the topographic image of a wedge-shaped 
crystal. This dependence was found to be similar to 
that for Ih,,,h investigated by Hattori, Kuriyama & 
Kato (1965), Hart & Lang (1965) and others. The effect 
of polarization on the contrast of interference fringes 
in the X direction has no such an analogue, and is dis- 
cussed in detail in the next section. 

3. Effect of polarization of X-rays in the radial direction 

The X-ray radiation is not polarized, so that the ob- 
served interference pattern contains two oscillations 
with periods Ax ~ and A~, for the rc and o- polarizations 
respectively. Superposition of two oscillations with 
closely spaced periods results in the appearance of a 

1 '~ - +(A~)- The amplitude of period (Ax)-l=(~)[(Ax) i x]. 
these oscillations is modulated by a wave with period 

~ -  -(A~,) ]. For Si the value Of Ax (Ae)- 1-=(~)[-(Ax) 1 -1 
remains approximately constant over a wide range of 
wavelengths 2. However, the absence of periodicity for 
the ~-polarization gives rise to the fact that the value 
Ae rapidly diminishes and the fringe contrast deteri- 
orates as the wavelength increases. It can be shown that 
the radiation wavelength 2~", for which n-fold fading of 
contrast takes place on a topograph because of the 
superposition of the ~ and cr waves in opposite phases, 
is determined by the expression 

2~ "~ I-(2n - -  1)to/t] 1/3~1"~ e0 • (12) 

Here t is the crystal thickness, n is the integer, Ze0° ~ is 
the wavelength for which the first fading of contrast is 

41 produced on the crystal thickness t0= 1 mm, Z eo= 
2 "2 1/3 (dh,~ /IZnlto) . In the case of the 111 reflexion in Si 

2~o = 0.662 ,~. The distance between the points of con- 
trast fading rapidly decreases as n rises. As a result, for 
large n the contrast of interference fringes on a topo- 
graph disappears. The number of fringes N between 
two neighbouring areas of contrast fading is approx- 
imately equal (for large n) to 

N~_2d2/3)fl. (13) 

The analysis of(13) shows that in the case of the 111 
reflexion in Si the polychromatic integral intensity 
fringes can be observed practically only up to 
2boun d'~ 1-3 A. For larger wavelengths the ratio Ae/Ax 
becomes less than 4 for any thickness t. Note that on 
thick crystals a greater number of fringes are observed 

between two areas of fading; e.g. 15 fringes are observed 
on 2 mm thick Si wafer between the first and second 
fadings, and only three fringes on a 0.2 mm thick 
wafer.* This means that polychromatic interference 
fringes appear almost exclusively in the case of diffrac- 
tion by sufficient thick crystals. Thus, in the experi- 
ments described in the first paper the fringes were ob- 
served on plane parallel crystals not less than 0.3 mm 
thick, and the maximum contrast conditions corre- 
sponded to t = 1 - 2  mm. If t was further increased, the 
absorption became considerable and interference 
fringes disappeared. The analysis of (12) and (13) and 
of the expression for Zeo" i demonstrates that the condi- 
tions for the observation of fringes with the same values 
of n rapidly deteriorate as indices of planes (hkl), from 
which reflexions are obtained, increase. Hence, poly- 
chromatic integral intensity fringes for the reflexions 
from high-indices planes can be obtained only in the 
case when this reflexion is produced by diffraction from 
a crystal of the short-wave range of the X-ray spectrum. 
For example, ) ~ b o u n d ~ ' ~ 0 " 7 8  /~k and 2~o~-0"45 A for the 
220 reflexion of Si, and 2bound ~0"45 A, 21e0--~ 0"34 A for 
the 422 reflexion of Si. 

The above arguments indicate that the presence of 
two states of polarization in the radiation incident on 
the crystal affects drastically the contrast of polychro- 
matic interference fringes. A good contrast can be ob- 
served on Si only for the diffraction of radiation with 
2<  1 A, with sufficiently thick crystals (/at ~-0"5-1.5) 
and only for the reflexions with low hkl indices. 

4. Variation of integral intensity in the azimuthal 
direction 

The foregoing considerations concerned only the case 
for which the plane of X-ray diffraction (the plane con- 
taining the wave vector of the incident wave and a 
normal to reflecting planes) is perpendicular to the 
crystal surface. From the experimental geometry it 
follows that when incident rays deviate from the plane 
of drawing in Fig. 2 towards the azimuthal direction, 
the diffraction plane is rotated around a normal to 
the reflecting planes by an angle ~p, calculated by the 
expression: 

tan q~ = y/(2Dl+ 03). (14) 

Here y is the coordinate on the film in the azimuthal 
direction Y. The origin of the coordinates (y=0) lies 
in the plane of drawing in Fig. 2. 

We now calculate the intensity of diffracted waves in 
the azimuthal direction. According to Kato's theory 
the distribution of intensity on the exit surface of the 
crystal for a given wavelength depends on the crystal 
thickness in the diffraction plane. The crystal thickness 
in different diffraction planes varies as t/cos q) with the 
angle ~0 increasing. Hence it follows that the conclu- 

* In fact, a smaller number of fringes is observed, since the fringe 
contrast on the interval ends between two areas of fading is low. 
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sions reached for the diffraction in the diffraction plane, 
q) = 0, can be expanded to any diffraction plane making 
an angle ~o with the normal to the crystal surface, if we 
substitute t/cos q0 for t in all the equations.* 

For example, in the case of diffraction of the poly- 
chromatic wave on the plane-parallel crystal, the lines 
of constant intensity are determined by the equality 
A=constant.  (11.2) and (14) and have the following 
form: 

x l l  +(2DlYD3)2]x /2=cons tan t  . (15) 

These curves are bent towards shorter wavelengths 
(to smaller x). At y,~(2DI +D3) this bending is hardly 
noticeable on topographs, the constant integral inten- 
sity lines appear to be straight lines similar to the lines 
of characteristic radiation. 

In order to check the validity of the conclusions of 
this section we recorded topographs in the experi- 
mental arrangement described in the preceding paper 
from the plane-parallel crystal tilted by different angles 
~oo. The angle q~ is measured between the normal to the 
surface and the diffraction plane. Rotation was per- 
formed with respect to the axis perpendicular to the 
reflecting planes. As the angle ~0 increases, the fringe 
spacing of integral intensity diminishes by cos-1 ~o 
times, which corresponds to the conclusions of the 
theory. For greater angles q~o the topographs also 
reveal certain tilting of fringes toward smaller values 
of)., and the lines of constant integral intensity intersect 
the lines of characteristic radiation (see Fig. 3). The 
intensity distribution along the line of characteristic 
radiation changes as the angle q~ varies. For example, 
the intensity distribution corresponding to the max- 
imum of integral intensity (Part I, Fig. 3a) appears for 
the line Ag Kcc in the Si 111 reflexion (wafer thickness 
0"8 mm, angle ~Oo = 30 °) after A~0--~ 13 °. On the basis of 
the known experimental geometry, dynamical param- 
eters can be found from the change of contrast on a 
characteristic line. The change of integral intensity in 
the azimuthal direction sets in sufficiently slowly and 
is unnoticeable for angles ~0< 10 °. The effect of azi- 
muthal divergence must be taken into account in the 
precise measurements of Ax and in the analysis of in- 
tensity distributions of characteristic lines. 

Conclusions 

We have analysed the contrast of topographs obtained 
with continuous X-ray radiation from a point source of 
divergent waves. This contrast is produced by super- 
position of different intensity distributions. The method 
of summation of these distributions differs from those 
considered earlier for the case of monochromatic 

* The analysis of this problem in terms of the plane-wave theory 
leads to the same results, i.e. for q~ ~ 0 the parameter A must be re- 
placed by A/cos q~. 

waves, although, if certain conditions are satisfied, they 
lead to the same results. The observation of polychro- 
matic integral intensity fringes is hindered by the pre- 
sence in the X-ray radiation of two states of polariza- 
tion. Contrast fringes can appear only on a limited 
number of reflexions, obtained in the case of diffrac- 
tion from a thick crystal of waves with sufficiently 
small values of 2. 

The results obtained may serve as a basis for the 
development of new methods of measurement of dy- 
namical parameters of crystals over a wide range of 
wavelengths, and promise new possibilities of studying 
the diffraction of X-rays by perfect and slightly strained 
crystals. 

APPENDIX A 

The wave field at a distance r from the point source of 
polychromatic radiation can be represented in the 
form of a package of monochromatic spherical waves 
Ei(2,r): 

a/(2) 
Ei(2,r)=-~.nr eX p [i(Kr-coz)] . (A.1) 

Here a~().) is Fourier's decomposition component of 
the ith elementary radiation with respect to mono- 
chromatic waves, co is the cyclic frequency, z is the 
time.* 

After diffraction by the crystal the wave field E i is 
• 

transformed into the fields Eb and EL propagated in the 
directions of primary and diffracted waves, respectively. 
According to Kato's (1961b) theory, describing the 
spherical-wave diffraction by a perfect crystal, the in- 
tensity of the field EL on the exit crystal surface at the 
point rp is found from the expression: 

Ig~(2,rp)l 2 =(lai(A)lE/32n) 
×(cos O/Krp)(KClzhl/sin 20)2-¢~(~). (A.2) 

Averaging the intensity determined by expression (A.2) 
over all radiation for a long period of time, we obtain 

C 
8n ( / ~  [g/h(P-rp)l 2) 

( c ) / /cos0"~ (K.C~l']Ej2(ff)a(2 , (A.3) 
= ~ \ K r p J  \ s i n  ztJJ 

Here a(2)=(;lai().)l 2) is the spectral radiation den- 

sity, braces ( . . . )  denote averaging over time. 
The intensity dih(rp) in the wavelength interval d2 of 

polychromatic radiation is obtained by multiplication 
of the right-hand side of expression (A.3) by d2. 

APPENDIX B 

By using the notation a = - tx/(D3 - t); b = tx/(D3 + t); 
B= 2ndhC(IZhl/2 2) (1 --ta/D~) 1/2, we transform the inte- 
gral in (10) to the form 

* The meanings of the other symbols are explained in the text of 
the paper. 
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1 
i 

Fig. 3. Topographic image of a plane parallel wafer of Si 
when the diffraction plane is inclined to the normal of the 
crystal surface by the angle ~00=30 °. The arrow indicates 
the direction of an increase in the angle ~. 

[To face p. 422 
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f bajz{BE(x q -  I=  a)(b-xq)j l /2}dxq.  (B.1) 

Strictly speaking, the parameter B depends on Xq; 
however, both the polarization factor C and I)~hl/2 2 c a n  
be assumed constant within the integration limits if 
condition (9) is satisfied. Assuming B=constant,  we 
calculate the integral in expression (B.1) following 
Kato's (1961b) method. Let J 2 ( 0  be in the form of a 
series: 

j 2 ( 0  = ~ (_  1) m ~ (2m-  1)!! ~2,,.  (B.2) 
,,=o (m!)2 (2m)!! 

Using decomposition (B.2) and having made a change 
of variables in (B.1): u=(xq-a) / (b -xq) ,  we have: 

I=B -1 ~ ( - 1 )  m -  
m----O 

1 (2m-1)!![B(b_a)]Zm+l 
(m!)2 (2m)!! 

f oo U m 
x +u)2,,+2du. (B.3) 

0 (1 

The integral in (B.3) is the tabulated (Dwight, 1961)" 

f~ urn (m!)2 (B.4) 
(1 +u) 2"+ 2 d u -  (2m+ 1)!" 

Substituting (B.4) into (B.3) we have the expression 

which can be written: 

I =  B -1  ~¢o(Q)dQ • (B.5) 

Here 

B ( b -  a)=(KClzhlt/cos O) (1 - t2/D2) - a/2 
= 2A(1 - tZ/D~)- 1/2 (B.6) 

where A is the parameter of the dynamical theory of 
X-ray diffraction introduced by Zachariasen (1945). 
Since we assumed condition (9) to be satisfied, the 
upper limit of integration in (B.5) is equal to 2A, 
B~--KCIzhl/2 sin 0, and (B.5) corresponds to Waller's 
integral. 
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When a molecular fragment has a known orientation, it is possible test rapidly all possible positions 
in the unit cell for this fragment by calculating structure factors at each position for a moderately large 
number of reflexions. A program, LOCOFOROM, has been written for this purpose and application to 
two structures is discussed. 

Introduction 

The location of a known molecular fragment in a 
crystal often takes place in two distinct stages. The 
first, and usually the easiest, stage is the determination 
of the orientation of the fragment. Indeed, it has long 
been recognized that a consistent but incorrect set of 
phases from a statistical model often yields an E map 

* Research performed at Oak Ridge National Laboratory and 
sponsored by the Energy Research and Development under con- 
tract with Union Carbide Corporation. 

with recognizable molecular fragments of correct 
orientation but wrong position. 

The orientation of a fragment may often be un- 
ambiguously obtained from the Patterson function 
(Nordman, 1970) or from a comparison of a calculated 
transform for a fragment with the observed reflexions 
(Tollin & Cochran, 1964). This information is some- 
times used to assist statistical phase-determination 
methods (Thiessen & Busing, 1974). 

The second stage is the determination of the posi- 
tions in the crystal for these fragments. However, dif- 
ficulties are often encountered at this stage and the 


